On the Homotopy of Symplectomorphism Groups of Homogeneous Spaces
نویسنده
چکیده
Let O be a quantizable coadjoint orbit of a semisimple Lie group G. Under certain hypotheses we prove that #(π1(Ham(O))) ≥ #(Z(G)), where Ham(O) is the group of Hamiltonian symplectomorphisms of O. MSC 2000: 53D05, 57S05, 57T20
منابع مشابه
ar X iv : m at h . SG / 0 40 44 96 v 2 1 3 Ju l 2 00 4 Symplectomorphism groups and isotropic skeletons
The symplectomorphism group of a 2-dimensional surface S is homotopy equivalent to the orbit of a filling system of curves on S. We give a generalization of this statement to dimension 4. The filling system of curves is replaced by a decomposition of M into a disjoint union of an isotropic 2-complex L and a disc bundle over a symplectic surface Σ Poincare dual to a multiple of the form. We show...
متن کاملSymplectomorphism groups and isotropic skeletons
The symplectomorphism group of a 2–dimensional surface is homotopy equivalent to the orbit of a filling system of curves. We give a generalization of this statement to dimension 4. The filling system of curves is replaced by a decomposition of the symplectic 4–manifold (M,ω) into a disjoint union of an isotropic 2–complex L and a disc bundle over a symplectic surface Σ which is Poincare dual to...
متن کاملDeformations of Whitehead Products, Symplectomorphism Groups, and Gromov–Witten Invariants
homotopy groups π∗(Xλ)⊗Q for a family of topological spaces, once we know enough about their additive structure. This allows us to interpret the condition of realizing as an Ak map a multiple of a map f : S1 −→ G between two topological groups in terms of the existence of a rational Whitehead product of order k. Our main example will be when the Xλ are classifying spaces of symplectomorphism gr...
متن کاملParameterized Gromov-Witten invariants and topology of symplectomorphism groups
In this note we introduce parameterized Gromov-Witten invariants for symplectic fiber bundles and study the topology of the symplectomorphism group. We also give sample applications showing the non-triviality of certain homotopy groups of some symplectomorphism groups.
متن کاملRational Homotopy Groups of Generalised Symmetric Spaces
We obtain explicit formulas for the rational homotopy groups of generalised symmetric spaces, i.e., the homogeneous spaces for which the isotropy subgroup appears as the fixed point group of some finite order automorphism of the group. In particular, this gives explicit formulas for the rational homotopy groups of all classical compact symmetric spaces.
متن کامل